3600 Series/ Low Thermal EM F Reed Relays

Low Thermal EMF Reed Relays

The 3600 Series is ideally suited to the needs of Instrumentation, Data Acquisition, and Process Control. The specification tables allow you to select the appropriate relay for your particular application. Recommended for use in Scanners, Multiplexers and Digital or Analog Multipoint Recorders. If your requirements differ from the selection options, please consult Coto's Factory to discuss a custom reed relay. Refer to page 41 for Thermal EMF test methods.

3600 Series Features

- Low Thermal EMF: < $5 \mu \mathrm{~V}$ through < $0.5 \mu \mathrm{~V}$ with 50 nV stability.
- Patented Low Thermal Design. Patent \#4,084,142.
- Low power coils to ensure low thermal EMF.
- High Insulation Resistance - $10^{12} \Omega$
- Control/Signal isolation of 1500 VDC
- High speed switching compared to electromechanical relays.
- High reliability, hermetically sealed contacts.
- Various Form A contacts. High Dielectric Strength.
- Epoxy coated steel shell provides magnetic shielding.
- Electrostatic shield for reducing capacitive coupling.

Dimensions in Inches (Millimeters)

3600 Series/ Low Thermal EM F Reed Relays

Model Number Parameters THERMAL EMF OPTIONS

COIL SPECS.

Nom. Coil Voltage
Coil Resistance
Operate Voltage
Release Voltage
CONTACT RATINGS
Switching Voltage
Switching Current
Carry Current
Contact Rating
Life Expectancy-Typical ${ }^{1}$
Static Contact Resistance (max. init.)

Dynamic Contact Resistance (max. init.)

RELAY SPECIFICATIONS

Insulation Resistance (minimum)
Capacitance - Typical Across Open Contacts Contact to Shield

Dielectric Strength (minimum)

Operate Time - including
bounce - Typical
Release Time - Typical

Test Conditions	Units	2 Form A ${ }_{\text {A }}$	3650^{4} 3 Form A	3660 3 Form A
Measured after 5 minutes at nominal coil voltage Refer to Reed Relay Technical Section for Details $+/-10 \%, 25^{\circ} \mathrm{C}$ Must Operate by Must Release by	$\mu \mathrm{V}$	$\begin{gathered} \text { Differential } \\ <5 \mu \mathrm{~V} \\ <3 \mu \mathrm{~V} \\ <1 \mu \mathrm{~V} \\ <0.5 \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Differential } \\ <5 \mu \mathrm{~V} \\ <3 \mu \mathrm{~V} \\ <1 \mu \mathrm{~V} \\ <0.5 \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Differential } \\ <5 \mu \mathrm{~V} \\ <3 \mu \mathrm{~V} \\ <1 \mu \mathrm{~V} \\ <0.5 \mu \mathrm{~V} \end{gathered}$
	$\begin{gathered} \text { VDC } \\ \Omega \\ \text { VDC - Max. } \\ \text { VDC - Min. } \end{gathered}$	$\begin{array}{cc}5 & 12 \\ 350 & 2000 \\ 3.8 & 9.0 \\ 0.4 & 1.0\end{array}$	$\begin{array}{cc}5 & 12 \\ 350 & 2000 \\ 3.8 & 9.0 \\ 0.4 & 1.0\end{array}$	$\begin{array}{cc}5 & 12 \\ 350 & 2000 \\ 3.8 & 9.0 \\ 0.4 & 1.0\end{array}$
Max DC/Peak AC Resist. Max DC/Peak AC Resist. Max DC/Peak AC Resist. Max DC/Peak AC Resist. Signal Level $1.0 \mathrm{~V}, 1 \mathrm{~mA}$	Volts Amps Amps Watts $\times 10^{6} \mathrm{Ops} .$	$\begin{gathered} 150 \\ 0.25 \\ 1.5 \\ 5 \\ 500 \end{gathered}$	$\begin{gathered} 150 \\ 0.25 \\ 1.5 \\ 5 \\ 500 \end{gathered}$	$\begin{gathered} 150 \\ 0.25 \\ 1.5 \\ 5 \\ 500 \end{gathered}$
$\begin{gathered} 50 \mathrm{mV}, 10 \mathrm{~mA} \\ 0.5 \mathrm{~V}, 50 \mathrm{~mA} \\ \text { at } 100 \mathrm{~Hz}, 1.5 \mathrm{msec} \end{gathered}$	Ω Ω	0.100 0.200	0.100 0.200	0.100 0.200
Between all Isolated Pins at $100 \mathrm{~V}, 25^{\circ} \mathrm{C}, 40 \% \mathrm{RH}$ Shield Floating Shield Guarding Contacts Open Shield \& Coil Tied Common	$\begin{gathered} \Omega \\ \mathrm{pF} \\ \mathrm{pF} \\ \mathrm{pF} \\ \mathrm{pF} \end{gathered}$	$\begin{aligned} & 10^{12} \\ & 1.2 \\ & 0.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10^{12} \\ & 1.2 \\ & 0.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10^{12} \\ & 1.2 \\ & 0.2 \\ & 2.5 \end{aligned}$
Between Contacts Contacts to Shield Contacts/Shield to Coil	VDC/peak AC VDC/peak AC VDC/peak AC	$\begin{gathered} 250 \\ 1000 \\ 1500 \end{gathered}$	$\begin{gathered} 250 \\ 1000 \\ 1500 \end{gathered}$	$\begin{gathered} 250 \\ 1000 \\ 1500 \end{gathered}$
At Nominal Coil Voltage, 30 Hz Square Wave Zener-Diode Suppression ${ }^{3}$	msec. msec.	$\begin{aligned} & 0.75 \\ & 0.1 \end{aligned}$	0.75 0.1	0.75 0.1
d on top of relay refers to Grid=.1"x.1" (2.54	Top View: \#1 location x 2.54 mm)			

Notes:

${ }^{1}$ Consult factory for life expectancy at other switching loads.
${ }^{2}$ Model 3660: Reed switch between pins \#9 \& \#10 is not low thermal and is tied in common with the electrostatic shield. ${ }^{3}$ Consists of 20V Zener-diode and 1N4002 diode in series, connected in parallel with coil.
${ }^{4}$ Model 3650: Reed switch between pins \#7 \& \#8 is not low thermal and is not tied in common with the electrostatic shield. Pin numbers for reference only.

Environmental Ratings

Storage Temp: $-35^{\circ} \mathrm{C}$ to ${ }^{+} 100^{\circ} \mathrm{C}$; Operating Temp: $-20^{\circ} \mathrm{C}$ to ${ }^{+} 85^{\circ} \mathrm{C}$ Solder Temp: $270^{\circ} \mathrm{C}$ max; 10 sec . max The operate and release voltage and the coil resistance are specified at $25^{\circ} \mathrm{C}$. These values vary by approximately $0.4 \% /{ }^{\circ} \mathrm{C}$ as the ambient temperature varies. Vibration: 20 G's to 2000 Hz ; Shock: 50 G's

